ROAD SAFETY ASSESSMENT UPDATE

WAR-63-PRIORITY PROJECT (WAR-63-0.83 ODOT PID 105399)

WARREN COUNTY, OHIO

RL RECORD LLC Consultants and SHA Engineering LLC

for the

Warren County Transportation Improvement District

April 2019
Update June 2019

Initial Assessment

An initial assessment of road traffic safety conditions, crash rates and crash reports was conducted for the whole of the WAR-63 corridor as part of the April 2017 Scoping Study (see Attachment A). This work found that the crash rate for the 2013-2015 available data analysis period averaged about 3.75 crashes per MVMT, about 2.3 times the Ohio statewide average rate for same type facilities in that period. For the portion of the overall corridor including the WAR63 Priority Project, the crash rate in that period was about 3.20 per MVMT, about twice the statewide average in that period.

Updated Review and Assessment

In April 2019, updated crash data was obtained for the WAR-63 Priority Project portion of the overall corridor covering the years 2016-2018 (Ohio DOT Crash Analysis Module Tool). Crash reports were compiled and evaluated, and a project-length crash history diagram was prepared for the Priority Project length (see Attachment B). Data and graphical analyses of crashes were completed, and histograms of crash frequency, distribution, cause, road conditions were prepared (see Attachment C).

For the most recent 3-year period of available data (2016-2018), the crash rate was about 2.37 per MVMT, remaining at about twice the current statewide average for same type facilities, which has declined slightly in the most recent 3-year period compared to the previous 3-year period. In this 2016-2018 period, crashes broke down as follows:

Fatal Crashes	0.8% of total
Injury Crashes	26.2% of total
Property Damage Only Crashes	73.0% of total

Other general attributes of crash occurrences on the WAR-63 Priority Project segment of the overall corridor (cause, distribution, etc) remain essentially unchanged since the 2013-2015 examination.

Most crashes on the WAR-63 Priority Project segment occur during peak traffic periods, speaking to both cause and resultant effect and impacts. High traffic periods have the greatest physical, modal and trip type conflicts, and also the greatest risk for involving multiple vehicles
in cause or impact. The single largest hour for crash occurrence is the 5 to 6 PM period (10.3\%), and 57% of all crashes occur in the noon to 7 PM high travel period, often causing extensive backups and delays, or even extended road closures, on the narrow and congested facility.

Crashes are occurring while vehicles are slowing, or stopped in traffic. Rear-end collisions accounted for 55\% of crashes in the 2016-2018 period; 25\% of all rear end crashes had injuries. Rear end crashes are often the result of unexpected reductions in speed or sight distance. Speed disparity among modes (trucks versus other) is an important and growing causative issue, based on field observations. Distracted driving is a suspected, but not typically reported, contributing factor.

Fixed object crashes were second most common single crash category, at 12% of all crashes; however these produced a high injury rate at 47% of all fixed object crashes. These are "run off the road" crashes, often the result of trying to avoid a rear-end collision, or otherwise a loss of control and lane departure. Clear zone obstacles, including utility poles, culverts, headwalls, and signs, are significant in the corridor.

Sideswipe and angle accidents (combined) produced 16\% of all crashes, but only 30% of these were with injury.

Approximately 200 feet of vertical relief occurs along the study corridor, and about 44% of the existing roadway has sections of significant vertical grade of up to 5%. One 830 -foot stretch of roadway exhibits grades in excess of 7%. However, only about 22% of all crashes in the corridor occur on these horizontally straight, significant vertical grade and transition sections, indicating that factors other than vertical grade dominate crash distribution and occurrence.

Following rear-end and fixed object and angle crashes, collisions with animals are next most common, accounting for 8% of all reported crashes.. Animal crashes often go unreported if there is no significant damage or injury, so actual frequency is unknown.

Similar to previous examination years, 74% of all crashes were described as "not at an intersection", indicating the likely result of introduction of unexpected maneuvers, including slowing and stopping near congestion queues, disparate speed platoons and access points.

Update on Safety Countermeasures and Relationship to WAR-63 Priority Project

A number of road safety countermeasures were recommended as an outcome of the initial safety assessment (April 2017). A few additional countermeasures have been identified as a product of the Updated Review and Assessment.

Table A below identifies initial and additional safety countermeasures, and how each is being addressed in the WAR-63 Priority Project currently being forwarded for implementation.

TABLE A. Safety Countermeasures for the Project Corridor and Incorporation in the WAR-63 Priority Project						

TABLE A. Safety Countermeasures for the Project Corridor and Incorporation in the WAR-63 Priority Project						

List of Attachments

ATTACHMENT A ATTACHMENT B ATTACHMENT C

INITIAL SAFETY ASSESSMENT (APRIL 2017 SCOPING STUDИ CRASH DIAGRAM FOR 2016-2018 PERIOD OF ANALYSIS CRASH DATA FOR 2016-2018 PERIOD OF ANALYSIS

ATTACHMENT A INITIAL SAFETY ASSESSMENT (APRIL 2017 SCOPING STUDY

Agricultural and Related Conflicts

This has historically been a major and looming traffic planning and safety issue: at peak operation, the LCI/WCI complex was generating more than 70 agricultural equipment crossings of SR 63 each day. Ag operations recently have been permanently ceased at the penal institutions. Other farm vehicle activity in the corridor is limited, but does occur, including heavy (and slow) farm-to-market grain trucks during harvest season.

Speed Enforcement

Speed enforcement by motor patrol is not a major presence in the corridor. It is hypothesized that, in arge part, there is no safe shoulder area in the system to pull over during enforcement actions.

Emergency Access

Emergency vehicles regularly use SR 63 in responding to calls in the general area and Turtlecreek Township, including responding to crashes on SR 63 itself.

Incident Management

There is no formal incident management support assignment to the corridor. It is noted that most serious/injury crashes shut down or seriously impede the highway for several hours or part of a day due to difficult access and lack of safety shoulder

Safety

Summary crash information is presented in Figure A-3 on Page 26.

Compiled crash data for the period 2013-2015 is found in Appendix C

Two Safety Integrated Priority Project (SIP) locations are located along the SR 63 Corridor in the study area. The first is located immediately east of Gateway Blvd., outside of the Monroe Corporation line This is a High Priority Segment. Additionally, a Low Cost Improvement Section is located east of the Markey Rd. Intersection

Crash Trend

The SR63 Corridor is currently experiencing crash rates at more than twice the statewide average for similar facilities ${ }^{22}$. The average crash rate for the entire 5.4 mile corridor in the 2013-2015 analysis period was 3.75 crashes per Million Vehicle Miles, about 2.2 times the statewide average. Breaking this down further, the rate was 3.20 per MVM west of SR741, and 4.55 per MVM east of SR741. Crash frequency is increasing as traffic volumes increase. This indicates that the facility is approaching its "tipping point", that level where the crash rate increases abruptly due to saturation of the roadway capacity, increased stops and turns, and increased opposing traffic, leaving no margin for driver error This correlates with a high crash frequency during peak periods. The single largest hour for crash occurrence is the 5 to 6 PM period (12.2\%), and more than half of all crashes occur in the noon to 7 PM high travel period.

Crashes are occurring while vehicles are slowing, or stopped in traffic. Rear-end collisions account for 49% of crashes, with "following too closely/failure to provide assured clear distance" also cited in 49% of crashes. Rear end crashes are often the result of unexpected reductions in speed or sight distance

Geometry plays a role in crash location. Approximately 200 feet of vertical relief occurs along the study corridor. One 830 -foot stretch of roadway exhibits grades in excess of 7%. About 31% of all crashes in the study area occur on horizontally straight, vertical grade conditions. Ten crashes occurred at log points $4.12-4.22$, a sag curve with several drives and limited sight distance

[^0]After rear end collisions, fixed object "run off the road" crashes, account for the second highest crash frequency type at 17%. These crashes are often the result of trying to avoid a rear-end collision, or loss of control.

Following rear-end and fixed object crashes, angle crashes and collisions with animals are next most common, accounting for 7 and 6% of all reported crashes, respectively. Animal crashes often go unreported if there is no significant damage or injury, so actual frequency is unknown.

While 77% of crashes are described as "not at an intersection", a significant number occurred at several high frequency locations proximal to problematic access points: in the MVG Gaming area, approaching the SR 741 intersection, in high driveway count areas east of SR 741, and in the high access point transition zone to the City of Lebanon. These crash concentrations are likely result of introduction of unexpected maneuvers, including slowing and stopping near access points.

Crashes with injuries or fatalities generally correlate to more severe accidents of greater concern in safety planning. About 26% of all accidents in the SR 63 corridor have injuries (including fatalities). The distribution and clustering of these injury/fatality accidents was examined separately, with the general findings illustrated on Figure A-3 on Page 26. The red ellipses on Figure A-3 indicate where concentrations of the most severe and injury-causing crashes have been occurring, out of proportion to the rest of the corridor.

Contributing Factors and Emerging Issues

Driver Expectations - SR63 has historically functioned as a rural arterial connecting the cities of Lebanon and Monroe. Because of its mostly rural setting and character, the roadway does not exhibit the cues that motorists associate with the need for caution. Narrow shoulders, open ditches, utility poles, adjacent visual encroachments, unpredictable driveways and access points, and confusing lane transitions combine to create a "busy" cognitive condition for motorists, especially those not familiar with the route.

Trip Type and Modal Conflicts - Changes in user mix and and traffic volumes, including the introduction of a significant fraction of heavy truck trips and increased commuter and convenience trips are still travelling on the original two-lane facility, resulting in growing conflicts in travel speed and driver behavior among vehicles.

Access Management - A number of problematic access points, some exacerbated by vertical curve and sight distance conditions exist along the route. Legacy residential drives, institutional entrances with increased ingress/egress volumes, slow moving farm and maintenance vehicles, along with the introduction of drivers not familiar with the area, have amplified the importance of access improvements

Roadway Geometric Characteristics - Although the roadway is extremely straight with very few horizontal curves, its vertical geometry - significant ups and downs with associated sight distance problems - contributes to unpredictable speeds and driver behavior.

Potential Countermeasures

The following counter-measures could reduce impacts of crashes regardless of long-range strategies or short-term projects selected:

Widen Shoulders - Widening shoulders could reduce the impact of fixed object accidents, as well as reduce road closures due to accidents

Widen Substandard Lanes - Lane widths in some sections is well less than the standard and driverexpected 12 feet.

Flatten Vertical Curves - Significant sight and stopping distance problems associated with the vertical profile of the roadway exist

Protect Turning Movements - Alternative intersection designs could reduce unexpected movements resulting from unprotected access points

Traffic Calming -Rumble strips could reduce speeds on vertical curves.

Access Management - Reducing the number of conflict points should be part of a long-range sustainabl solution.

Enhanced Warning Signage - Animals generally develop repeatable habits. Next generation warning signs could identify concentrated crossing zones.

Way finding - Clear directions reduce driver distraction and improve safety

APPENDIX C
SAFETY AND CRASH DATA

DAY_OF_WEEK	Number	
Tuesday	\%	
Weddes	58	19.1%
Friday	54	17.8%
Thursday	45	14.9%
SSaturday	45	14.9%
Monday	39	12.9%
Sunday	32	10.6%
Grand Total	30	9.69%

LIGHI_CONDITION	Number	\%
Dayight	209	690%
Dark - No Lights	55	18.2\%
Dark - Lighted	21	6.9\%
Dusk	8	2.6\%
Dawn	8	2.6\%
Light Not Stated	2	0.7\%
Grand Total	303	100.0

sumber of vehicles

C-2|Page

ACTION1	Number	\%
Straight Ahead	225	74.3\%
Making Left Turn	25	8.3\%
Slowing Or Stopped In Traffic	18	5.9\%
Backing	10	3.3\%
Changing Lanes	6	2.0\%
Making Right Turn	6	2.0\%
Unknown	4	1.3\%
Overtaking/Passing	4	1.3\%
Entering Traffic Lane	2	0.7\%
Making U-Turn	1	0.3\%
Other Motorist Action	1	0.3\%
Leaving Trafic Lane	1	0.3\%
Grand Total	303	100.0\%

CONIRIBUTING_FACTOR1	Number	\%
Followed Too Closely/ACDA	147	48.5\%
Improper Lane Change/Passing/offroad	27	8.9\%
Failure To Yield	24	7.9\%
None	21	6.9\%
Unsafe Speed	15	5.0\%
Failure To Control	14	4.6\%
Left Of Center	13	4.3\%
Improper Backing	7	2.3\%
Improper Turn	7	23\%
Unknown	6	2.0\%
Ran Red Light	4	1.3\%
Operating Vehicle In Negligent Manner	4	1.3\%
Load Shirting/Falling/Spilling	3	1.0\%
Swerving To Avoid	3	1.0\%
Operating Defective Equipment	3	1.0\%
Wrong Side/Wrong Way	1	0.3\%
Vision Obstruction	1	0.3\%
Other Improper Action	1	0.3\%
Ran Stop Sign	1	0.3\%
Improper Start From Parked Position	1	0.3\%
Grand Total	303	100.0\%

ATTACHMENT B CRASH DIAGRAM FOR 2016-2018 PERIOD OF ANALYSIS

ATTACHMENT C CRASH DATA FOR 2016-2018 PERIOD OF ANALYSIS

SEVERITY CRASH_SEVERITY

DAY_OF_WEEK	Number	$\%$
Friday	30	23.8%
Tuesday	21	16.7%
Monday	19	15.1%
Sanarday	16	12.7%
Thursday	16	12.7%
Wednesday	14	11.1%
Sunday	10	7.9%
Grand Total	$\mathbf{1 2 6}$	$\mathbf{1 0 0 . 0 \%}$

HOUR_OF_DAY	Number	\%
00	3	2.4\%
01	1	0.8\%
03	1	0.8\%
04	2	1.6\%
05	2	1.6\%
06	4	3.2\%
07	10	7.9\%
08	7	5.6\%
09	8	6.3\%
10	5	4.0\%
11	4	3.2\%
12	10	7.9\%
13	6	4.8\%
14	8	6.3\%
15	11	8.7\%
16	9	7.1\%
17	13	10.3\%
18	9	7.1\%
19	6	4.8\%
20	3	2.4\%
21	$\stackrel{2}{2}$	1.6\%
22	1	0.8\%
23	1	0.8\%
Grand Total	126	100.0\%

WAR-93 PRIORITY PROJECT

WEATHER_CONDITION	Number	\%
Clear	75	59.5\%
Rain	24	19.0\%
Cloudy	23	18.3\%
Snow	2	1.6\%
Other/Unknown	1	0.8\%
Fog, Smog, Smoke	1	0.8\%
Grand Total	126	100.0\%

WAR-93 PRIORITY PROJECT

LIGHT_CONDITION	Number	
Daylight	$\%$	
Dark Lighted Roadway	$\mathbf{9 2}$	73.0%
Dark - Roadway Not Lighted	13	10.3%
Dawn	$\mathbf{1 1}$	8.7%
Dusk	6	4.8%
Grand Total	$\mathbf{4}$	3.2%

TYPE OF CRASH CRASH SEVERITY		Number
Rear End		
	Property Damage Crash	52
	Injury Crash	16
	Fatal Crash	1
Rear End Total		69
Fixed Object	Property Damage Crash	8
	Injury Crash	7
Fixed Object Total		15
Sideswipe - Passing	Property Damage Crash	12
	Injury Crash	1
Sideswipe - Passing Total		13
	Property Damage Crash	7
	Injury Crash	1
Animal Total		8
Angle	Property Damage Crash	1
	Injury Crash	5
Angle Total		6
Left Turn	Property Damage Crash	2
	Injury Crash	2
Left Turn Total		4
Right Turn	Property Damage Crash	3
Right Turn Total		3
Sideswipe - Meeting	Property Damage Crash	2
Sideswipe - Meeting Total		2
Backing	Property Damage Crash	2
Backing Total		2
Parked Vehicle	Property Damage Crash	1
Parked Vehicle Total		1
Head On	Injury Crash	1
Head On Total		1
Other Object	Property Damage Crash	1
Other Object Total		1
Other Non-Collision	Property Damage Crash	1
Other Non-Collision Total		1
Grand Total		126

ROAD_CONTOUR	Number	
Straight Level	108	
Straight Grade	16	85.7%
Curv Grade	1.7%	
Cure Level	1	0.8%
Grand Total	1	0.8%

ANIMAL_TYPE Number ${ }^{\%}$

tand | 126 | 100.0% |
| :--- | :--- |
| 126 | 100.0% |

ACTION1	Number	\%
Straight Ahead	92	73.0\%
Slowing Or Stopped In Traffic	13	10.3\%
Changing Lanes	7	5.6\%
Making Left Turn	4	3.2\%
Making Right Turn	4	3.2\%
Backing	2	1.6\%
Making U-Turn	2	1.6\%
Unknown	1	0.8\%
Negotiating A Curve	1	0.8\%
Grand Total	126	100.0\%

CONTRIBUTING_FACTOR1	Number	\%
Followed To Closely/ACDA	72	57.1\%
Improper Lane Change/Passing/Offroad	13	10.3\%
None-Motorist	12	9.5\%
Failure To Yield	8	6.3\%
Failure To Control	4	3.2\%
Improper Turn	3	2.4\%
Unknown	3	2.4\%
Unsafe Speed	2	1.6\%
Stopped Or Parked Illegally	2	1.6\%
Improper Backing	2	1.6\%
Left Of Center	2	1.6\%
Swerving To Avoid	1	0.8\%
Ran Red Light	1	0.8\%
Other Improper Action	1	0.8\%
Grand Total	126	100.0\%

	Number	$\%$
Total	126	100.0%

TRAFFIC_CONTROL1	Number			$\%$
Pavement Markings	$\mathbf{7 2}$	57.1%		
Traffic singal	33	26.2%		
NN Controls	12	9.5%		
Stop Sign	8	6.3%		
Other	1	0.8%		
Grand Total	$\mathbf{1 2 6}$	100.0%		

ESTMMATED_SPEED1

WAR-93 PRIORITY PROJECT

TYPE_OF_CRASH	CRASH_SEVERITY	TRAFFIC_CRASH_YEAR	Number
Rear End	Property Damage Crash	2016	19
		2017	19
		2018	14
	Injury Crash	2016	9
		2017	4
		2018	3
	Fatal Crash	2018	
Rear End Total			69
Sideswipe - Passing			
	Property Damage Crash	2016 2017	${ }^{6}$
		2018	4
	Injury Crash	2018	1
Sideswipe - Passing Total			13
Angle			
	Property Damage Crash	2017	1
	Injury Crash	2016	${ }^{2}$
		2017	3
Angle Total			6
Right Turn	Property Damage Crash	2016	2
Right Turn Total		2018	1
			3
Fixed Object			
	Property Damage Crash	2016 2017	3
		2018	3
	Injury Crash	2017	6
		2018	1
Fixed Object Total			15
Other Object Other Object Total	\|Property Damage Crash	2016	1
			1
Other Non-Collision Other Non-Collision Total	\|Property Damage Crash	2016	1
			1
Animal	Property Damage Crash	2016	1
		2017	4
		2018	2
	Injury Crash	2016	1
Animal Total			8
Sideswipe - Meeting			
	Property Damage Crash	2016	1
		2018	1
Sideswipe - Meeting Total			,
	\|Property Damage Crash	2016	1
			1
Left Turn	Property Damage Crash	2016	1
	,	2017	1
	Injury Crash	2017	1
		2018	1
Left Turn Total			4
Backing	Property Damage Crash	2017 2018	1
Backing Total			
Head On Total	\|injury Crash	2018	1
Grand Total			126

(blank)
Grand Total

Glank	126	100.0%
	126	100.0%

Frequency of Crashes by Hour

Frequency of Crashes by Month

Frequency of Crashes by Light Condition

\square Daylight

- Dark- Lighted Roadway \square Dark- Roadway Not Lighted - Dawn - Dusk

WAR-63 PRIORITY PROJECT

Frequency of Crashes by Road Condition

[^0]: ${ }^{22}$ The 2013 Ohio Statewide average for 2-lane undivided rural highways was 1.68/MVM

